Enhanced reconstruction of long bone architecture by a growth factor mutant combining positive features of GDF-5 and BMP-2.
نویسندگان
چکیده
Non healing bone defects remain a worldwide health problem and still only few osteoinductive growth factors are available for clinical use in bone regeneration. By introducing BMP-2 residues into growth and differentiation factor (GDF)-5 we recently produced a mutant GDF-5 protein BB-1 which enhanced heterotopic bone formation in mice. Designed to combine positive features of GDF-5 and BMP-2, we suspected that this new growth factor variant may improve long bone healing compared to the parent molecules and intended to unravel functional mechanisms behind its action. BB-1 acquired an increased binding affinity to the BMP-IA receptor, mediated enhanced osteogenic induction of human mesenchymal stem cells versus GDF-5 and higher VEGF secretion than BMP-2 in vitro. Rabbit radius defects treated with a BB-1-coated collagen carrier healed earlier and with increased bone volume compared to BMP-2 and GDF-5 according to in vivo micro-CT follow-up. While BMP-2 callus often remained spongy, BB-1 supported earlier corticalis and marrow cavity formation, showing no pseudojoint persistence like with GDF-5. Thus, by combining positive angiogenic and osteogenic features of GDF-5 and BMP-2, only BB-1 restored a natural bone architecture within 12 weeks, rendering this promising growth factor variant especially promising for long bone regeneration.
منابع مشابه
Assessment of the potential of growth factors for localized alveolar ridge augmentation: a systematic review.
OBJECTIVE To systematically assess the literature regarding the clinical, histological, and radiographic outcome of bone morphogenetic proteins (BMP-2, BMP-7), growth/differentiation factor-5 (GDF-5), platelet-derived growth factor (PDGF), and parathyroid hormone (PTH) for localized alveolar ridge augmentation. MATERIAL AND METHODS Five separate Medline searches were performed in duplicate fo...
متن کاملMechanical tension-stress induces expression of bone morphogenetic protein (BMP)-2 and BMP-4, but not BMP-6, BMP-7, and GDF-5 mRNA, during distraction osteogenesis.
Bone lengthening with osteotomy and gradual distraction was achieved in 57 rats, and the effect of mechanical tension-stress on gene expression of bone morphogenetic proteins (BMPs) was investigated by in situ hybridization and Northern blot analysis using probes of BMP-2, BMP-4, BMP-6, BMP-7, and growth/differentiation factor (GDF)-5. There was a lag phase for 7 days after femoral osteotomy un...
متن کاملInductive activity of recombinant human growth and differentiation factor-5.
Growth and differentiation factor-5 (GDF-5) is a divergent member of the transforming growth factor-beta/bone morphogenetic protein (BMP) superfamily that is required for proper skeletal patterning and development in the vertebrate limb. Based on the homology of GDF-5 with other bone-inducing BMP family members, the inductive activity of a recombinant form of human GDF-5 (rhGDF-5) was evaluated...
متن کاملTGF-β1, GDF-5, and BMP-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells.
Replacement of degenerated cartilage with cell-based cartilage products may offer a long-term solution to halt arthritis' degenerative progression. Chondrocytes are frequently used in cell-based FDA-approved cartilage products; yet human marrow-derived stromal cells (hMSCs) show significant translational potential, reducing donor site morbidity and maintaining their undifferentiated phenotype w...
متن کاملBone morphogenetic proteins and growth and differentiation factors in the human cornea.
PURPOSE To investigate transcription of members of the transforming growth factor (TGF)-beta superfamily and corresponding receptors in human corneal epithelium and stroma. METHODS Transcription of bone morphogenetic proteins (BMP)-2, BMP-3, BMP-4, BMP-5, and BMP-7; growth- differentiation factor (GDF)-5), and BMP receptors (BMPR) types I (BMPR-IA, BMPR-IB) and II (BMPR-II) was investigated b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biomaterials
دوره 34 24 شماره
صفحات -
تاریخ انتشار 2013